Многолетний опыт, воплощенный в новом бренде
Сегодня рынок ИТ-консалтинга обновляется, и у нас тоже есть новость: компания Columbus East, ранее входившая в состав датской компании, становится независимым международным игроком и меняет свое название. Новый бренд – Odyssey Consulting Group.
MoneyCare использует машинное обучение для прогнозирования одобрения кредитов
image

MoneyCare использует машинное обучение для прогнозирования одобрения кредитов

Кредитный брокер MoneyCare и компания Odyssey Consulting Group создали модель прогнозирования на базе Microsoft Azure Machine Learning. Решение оценивает вероятность положительного ответа банка на запрос кредита.

MoneyCare – единственный независимый кредитный брокер в России, не аффилированный ни с одним банком. Компания создавалась в 2013 году как проект торговой сети бытовой техники и электроники «Эксперт» для самостоятельного управления финансированием покупок клиентов, после того как выявилось, что ретейлер теряет до 25% всех клиентов, обратившихся за потребительским кредитом. Сейчас с платформой MoneyCare работают более 2000 партнеров, а текущий пул банков – это 90% рынка в целевых сегментах.

Современные технологии позволяют финансовым компаниям работать с большим набором данных быстрее и эффективнее, т.к. представляют собой совокупность различных методов обнаружения знаний. Например, машинное обучение — это очень комплексное применение статистики для поиска закономерностей в данных и создание на их основе прогнозов будущего поведения, результатов и тенденций.

Для повышения конверсии кредитных заявок компания MoneyCare решила сократить количество анкетных данных до минимально необходимых, а также создать модель, прогнозирующую вероятность положительного ответа банка. Определение минимального набора данных и построение прототипа компания MoneyCare доверила экспертам практики информационно-аналитических систем консалтинговой компании Odyssey Consulting Group. Причина выбора партнера проста – Odyssey Consulting Group подходит к решению задач, концентрируясь на понимании бизнеса и проблем клиента, являясь для клиента драйвером использования новейших ИТ-решений и технологий.

Использование облачных решений позволяет быстро развернуть желаемую инфраструктуру с минимальными инвестициями. Облачные технологии открывают широкое поле для экспериментов и позволяют подбирать наиболее эффективные варианты самых инновационных решений. Например, использовать машинное обучение для прогнозирования, не вкладываясь в развитие вычислительных мощностей или аналитических инструментов
Евгений Лебедев, руководитель направления по развитию бизнеса облачных решений компании Odyssey Consulting Group

Выбирая платформу машинного обучения, специалисты MoneyCare остановились на облачном сервисе Azure Machine Learning, который позволяет оперативно создавать и развертывать полнофункциональные прогнозные модели в качестве решений аналитики.

Точное прогнозирование – ключевая ступень к успеху на финансовом рынке. Microsoft Azure Machine Learning предоставляет интерактивное визуальное рабочее пространство, упрощая создание, тестирование и самое главное развертывание для последующего использования моделей прогнозной аналитики
Татьяна Делягина, менеджер по продвижению Data Insight компании Microsoft

На первом этапе для MoneyCare был создан прототип классификатора в Azure Machine Learning, задача которого — отбор более 60% заявок на кредит с вероятностью одобрения более 80%. Используемые методы машинного обучения: дискриминантный анализ, регрессионный анализ, кластеризация, классификация на основе разделимости (SVM, ANN), а также алгоритмы сокращения размерности (PCA).

Второй частью проекта стало обучение сотрудников MoneyCare принципам работы и совместный воркшоп по совершенствованию прототипа. В этот этап вошло консультирование по настройке моделей в Azure Machine Learning, типовым задачам машинного обучения, а также определение следующих шагов по улучшению прототипа.

Несмотря на популярность темы, реализованных проектов по машинному обучению не так много. Во-первых, сказывается плохое качество исходных данных – информации, которая может быть использована для прогнозирования, зачастую просто нет. Вторая проблема – дефицит кадров. Можно спроектировать любой прототип, вопрос в том, кто его будет потом использовать. Нашей задачей было не просто создание модели прогнозирования при помощи средств машинного обучения — необходимо было обучить внутри заказчика специалиста Data Science, способного развивать модель, тестировать на ней новые гипотезы и адаптировать параметры к изменяющимся условиям внешней среды. Я думаю, у нас получилось
Евгений Лебедев
Успех нашей компании напрямую связан с тем, какую выгоду мы приносим нашим партнерам. Выгоду по всем показателям: временным, финансовым. Использование инновационных ИТ-технологий является основой для получения этой выгоды. Odyssey Consulting Group помогли нам получить еще одно конкурентное преимущество на рынке. Спасибо!
Дмитрий Давыдов, директор по ИТ компании MoneyCare

Запишитесь на консультацию наших экспертов
Защита от автоматического заполнения  
Подтвердите, что вы не робот*
Запишитесь на консультацию наших экспертов
Спасибо! Ваша заявка принята!